Ips клетки — перепрограммирование клеток в лечении опухолей, паралича, рака и других заболеваний

ips клетки - перепрограммирование клеток в лечении опухолей, паралича, рака и других заболеваний

  • ips клетки - перепрограммирование клеток в лечении опухолей, паралича, рака и других заболеваний
  • ips клетки - перепрограммирование клеток в лечении опухолей, паралича, рака и других заболеваний
  • ips клетки - перепрограммирование клеток в лечении опухолей, паралича, рака и других заболеваний
  • ips клетки - перепрограммирование клеток в лечении опухолей, паралича, рака и других заболеваний
  • ips клетки - перепрограммирование клеток в лечении опухолей, паралича, рака и других заболеваний

06 Ноября 2015 Аполлинария Боголюбова, «Биомолекула» Иммунотерапия опухолей – в некотором смысле парадоксальная область в современной биомедицине. Уже несколько десятков лет она является одним из самых модных и интенсивно развивающихся разделов экспериментальной онкологии, при этом в повседневной медицинской практике иммунотерапевтические подходы всё это время шли в глубоком арьергарде. Однако поразительные результаты клинических испытаний блокировки «тормозов» иммунного ответа положили начало новой эре в лечении рака, в которой иммунотерапии отведена, безусловно, одна из главных ролей.Взаимодействие опухолевых и иммунных клеток – предмет пристального внимания иммунологов на протяжении уже не одного десятилетия [1]. Это и неудивительно: слишком уж заманчива идея использовать для лечения онкологических заболеваний свой собственный, эволюционировавший миллионы лет механизм специфичного, направленного убийства дефектных клеток. В теории задача проста: нужно всего лишь дать иммунным клеткам «пощупать» молекулярную структуру опухоли, а после этого помочь проникнуть в гущу раковых клеток. Однако в реальности высокая генетическая изменчивость опухолевых клеток дает им возможность ловко избегать иммунного надзора, а также обезвреживать уже готовые к бою активированные иммунные клетки, передавая им разнообразные ингибирующие сигналы.Лишь совсем недавно иммунологи нашли выход из сложившейся ситуации. Используя терапевтические препараты на основе антител, они научились блокировать ингибирующие сигналы, при помощи которых опухоль защищается от иммунных клеток, тем самым реактивируя защитную функцию последних и направляя их на борьбу с опухолью [2].CTLA-4 и PD-1 – программа реабилитации ветеранов иммунного ответаКак и любая армия, после завершения большой военной кампании система иммунного ответа нуждается в масштабной реорганизации, а солдаты – в социально-психологической реабилитации. То, к чему приводит игнорирование этого простого правила, можно было наблюдать в большинстве войн новейшего времени, когда непристроенные и отвыкшие от «гражданки» военные массово возвращались в мирную жизнь без должной реабилитации, после чего сходили с ума, подавались в криминал либо в радикальные военно-политические образования. Точно так же при отсутствии контроля над ходом иммунной реакции активированные клетки иммунной системы могут повредить окружающие органы и ткани, нарушить их функциональность и даже привести к смерти больного.К счастью, наш организм намного умнее большинства мировых политиков и выработал немалое число высокоэффективных механизмов адаптации иммунных клеток к «мирной жизни» после завершения иммунной реакции.Так, рецепторная молекула CTLA-4, находящаяся на поверхности активированных Т-клеток, является своеобразным тормозом («контрольной точкой», англ. checkpoint) для Т-лимфоцитов. «Тормозящий» сигнал через CTLA-4 запускается теми же самыми молекулярными партнерами (лигандами) – белками B7, – которые совсем недавно через рецептор CD28 запускали прямо противоположный процесс – активацию Т-лимфоцита к выполнению защитных функций (рис. 1). Прочность связывания с B7 у молекулы CTLA-4 намного выше, чем у CD28, и в какой-то момент ингибирующие сигналы начинают доминировать над активирующими. Деление Т-клеток и их функционирование постепенно останавливаются, иммунный ответ затухает, а воспаленная ткань постепенно возвращается к мирной жизни. Еще одним, не менее важным, «тормозом» является молекула PD-1, встречающаяся на поверхности многих иммунных клеток (Т- и В-лимфоцитов, клеток врожденного иммунитета) и обладающая, по-видимому, еще бόльшим спектром действия, нежели CTLA-4. Взаимодействуя со своими лигандами PD-L1 и PD-L2, она тоже эффективно ингибирует иммунный ответ [2].ips клетки - перепрограммирование клеток в лечении опухолей, паралича, рака и других заболеванийРисунок 1. Схема работы ипилимумаба – препарата на основе моноклональных антител против CTLA-4. CTLA-4 конкурирует с CD28 за молекулы B7, не давая Т-клетке получить активирующий сигнал. При использовании ипилимумаба антитела блокируют CTLA-4, CD28 взаимодействует с B7, в результате чего Т-лимфоцит активируется и может убивать опухолевые клетки. Рисунок с сайта newdrugapprovals.org.Обмануть обманщика: миссия выполнима?Споры о том, существует ли постулированный Фрэнком Бернетом и Льюисом Томасом еще в середине прошлого века «противоопухолевый иммунный надзор», не утихают до сих пор. Очевидно одно: на той стадии, когда опухоль можно обнаружить с помощью методов современной диагностики, и тем более на стадии появления клинических симптомов, иммунная система не справляется с контролем опухолевого роста. «Молекулярное окружение»*, создаваемое умной и хитрой опухолью, делает невозможным эффективное уничтожение аномальных клеток иммунной системой [3]. В частности, одной из стратегий ускользания рака от иммунного ответа является использование вышеописанных «тормозных» механизмов. Так, клетки многих злокачественных опухолей способны продуцировать молекулы PD-L1 и PD-L2, обманывая иммунные клетки и заставляя их «успокаиваться» вместо того, чтобы самоотверженно бороться с предателями.* – Как на цитокиновом языке можно договориться до рака, подробно объясняет профессор Онкологического центра в Фокс Чейс Сергей Гривенников: «Цитокины – регуляторы воспаления и рака» (видеозапись семинара СМУ ИБХ) [4]. – Ред.Вся история лечения злокачественных опухолей указывает на то, что их крайне сложно обмануть. Чрезвычайно высокая генетическая изменчивость опухолевых клеток приводит к тому, что они могут приспособиться почти к любому терапевтическому воздействию, активируя обходные молекулярные механизмы выживания.В то же время нормальные клетки иммунной системы куда более честны и прямолинейны. А что, если воздействовать не на опухолевые клетки, а на клетки иммунной системы – «открыть им глаза» на предателей, блокировав тормозные механизмы иммунного ответа?На помощь пришли старые добрые моноклональные антитела – высокоспецифичные молекулы, способные связываться с CTLA-4 или PD-1 и блокировать их функцию [5]. Начиная с 90-х годов XX века многие научные коллективы, координируемые иммунологом Джеймсом Эллисоном, исследовали, действительно ли антитела, специфичные к рецептору CTLA-4, способны блокировать его и тем самым усиливать противоопухолевый иммунный ответ (рис. 1). Долгие годы работы наконец увенчались успехом: эффект таких антител был продемонстрирован на лабораторных животных, а позже и на пациентах, и в 2010 году препарат ипилимумаб (моноклональные антитела против молекулы CTLA-4) начал свое триумфальное шествие.Результаты последних клинических испытаний поразительны: общая выживаемость пациентов, получавших только ипилимумаб, по сравнению со стандартными протоколами химиотерапии выросла почти на полгода. Здесь нужно отметить, что пациенты, принимавшие участие в этих исследованиях, страдали запущенными формами рака с множественными метастазами, и их опухоли не отвечали ни на какие схемы традиционной терапии. Для этой группы пациентов даже столь «скромное» продление жизни является поистине чудом. Поэтому неудивительно, что именно благодаря ипилимумабу в 2013 году область иммунотерапии опухолей была названа журналом Science прорывом года.Новые перспективы и новые проблемыОднако тормозные механизмы иммунной системы не ограничиваются CTLA-4. Несмотря на поразительные успехи блокады именно этой молекулы, значительная часть пациентов вообще не отвечала на такое лечение, поэтому следующим этапом развития данной стратегии стала блокировка других «контрольных точек».Сразу же после разрешения применения ипилимумаба начались клинические испытания антител – блокаторов молекулы PD-1. Из-за отличных результатов предыдущих испытаний они шли по ускоренной программе, и уже в 2014 году новые препараты ниволумаб и пембролизумаб (и тот, и другой представляют собой моноклональные антитела против PD-1) были одобрены для лечения меланомы, а затем и ряда других опухолей.В 2014 году стали известны результаты первых исследований эффективности препаратов, блокирующих молекулярного партнера PD-1 – PD-L1. Как и предполагалось, лекарство работает очень хорошо (рис. 2), так что следующие этапы его испытаний и выход на фармацевтический рынок не за горами [6].Следует особо отметить, что блокаторы PD-1 и PDL-1 дают шанс на излечение даже тем пациентам, которые не ответили на выключение CTLA-4, а комбинация блокировки PD-1 и CTLA-4 повышает частоту длительных ремиссий почти в 3 раза (!) по сравнению с блокировкой только одного из тормозных путей.ips клетки - перепрограммирование клеток в лечении опухолей, паралича, рака и других заболеванийРисунок 2. График выживаемости пациентов с меланомой при приеме ипилимумаба и ниволумаба. Комбинированное лечение (синяя линия) оказывается в три раза эффективнее, чем монотерапия ипилимумабом (красная линия). Рисунок из [6].С открытием блокаторов всё актуальнее становится вопрос поиска биомаркеров, предсказывающих, какие пациенты лучше всего будут реагировать на тот или иной препарат [7]. Методы полногеномного секвенирования, визуализации опухолевых и иммунных клеток уже сейчас позволяют сузить круг пациентов, для которых этот вид иммунотерапии окажется наиболее эффективным. Однако разработка детального персонализированного подхода к выбору лечения еще впереди.Несмотря на множество плюсов этой стратегии, она неизбежно несет и серьезные сложности в виде побочных эффектов. Дело в том, что влияние на регуляцию иммунологических процессов неизбежно ведет к их дестабилизации. Блокирование тормозных механизмов чревато повышенной агрессивностью иммунных клеток по отношению не только к опухоли, но и к нормальным клеткам организма, что чревато аутоиммунным поражением здоровых тканей. Даже при использовании одного препарата частота аутоиммунных поражений слизистых оболочек, кишечника и/или печени составляет более 50%. Поэтому крайне необходимо найти пути снижения нежелательных эффектов этих блокаторов. Так, ученые пытаются использовать в клинической практике комбинацию этих препаратов с лекарствами, обычно применяющимися для лечения аутоиммунных заболеваний. Такие лекарства взаимодействуют с молекулами, участвующими в развитии воспаления, блокируют их действие и тем самым снижают риск возникновения аутоиммунного процесса, не влияя при этом на эффективность основного препарата.Возможно, наиболее важным результатом испытаний блокировки CTLA-4 и PD-1/PD-L1 стало то, что у значительного числа пациентов, получавших это лечение, метастатические опухоли исчезали полностью и не появлялись вновь на протяжении всего времени наблюдения. Эти данные не просто указывают на высокую эффективность такого вида терапии. В онкологии не принят термин «излечение», потому что опухоль может вернуться в любой момент спустя месяцы, годы и даже десятилетия после, казалось бы, полного уничтожения всей ее клеточной массы. Полученные же результаты вплотную приближают нас к еще недавно совершенно фантастической идее полного излечения от самых запущенных метастатических опухолей.

  • биомолекула: «Одураченные макрофаги, или несколько слов о том, как злокачественные опухоли обманывают иммунитет»;
  • Боголюбова А.В., Ефимов Г.А., Друцкая М.С., Недоспасов С.А. (2015). Иммунотерапия опухолей, основанная на блокировке иммунологических «контрольных точек» («чекпойнтов»). Медицинская иммунология. 17, 395–406;
  • биомолекула: «Опухолевые разговоры, или Роль микроокружения в развитии рака»;
  • Гривенников С. (2014). Цитокины – регуляторы воспаления и рака. Видеозапись семинара на сайте ИБХ;
  • биомолекула: «Моноклональные антитела»;
  • Postow M.A., Chesney J., Pavlick A.C., Robert C., Grossmann K., McDermott D. et al. (2015). Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med. 372, 2006–2017;
  • биомолекула: «Как распознать рак при помощи биомаркеров?».
Читайте также:  Причины кератоконуса – признаки и симптомы патологии, основные риски кератоконуса и прогноз

Портал «Вечная молодость» http://vechnayamolodost.ru назад
06 Мая 2015

Иммунотерапия открыла совершенно новую возможность для лечения рака наряду с химиотерапией, лучевой терапией и хирургией.

читать 23 Апреля 2015

Исследователи из Массачусетского технологического института разработали новую методику иммунотерапии рака. Суть технологии заключается в объединении работы двух основных ветвей иммунной системы.

читать 16 Декабря 2014

На ежегодной встрече Американского гематологического общества в Сан-Франциско много внимания было уделено вопросам использования модифицированных лимфоцитов для лечения лимфом и лейкозов.

читать 11 Декабря 2014

Блокирование определенных поверхностных белков с помощью нового класса препаратов – ингибиторов иммунных контрольных точек – «освобождает» Т-лимфоциты, начинающие активно уничтожать раковые клетки.

читать 20 Июня 2014

Комбинация терапевтической вакцины и низкодозной химиотерапии, применяемая перед хирургическим вмешательством, делает аденокарциономы протоков поджелудочной железы восприимчивыми к иммунотерапии.

читать

Источник: http://www.vechnayamolodost.ru/articles/biomedicin/immrabltonaklopb1/

Т-клетки — марионетки, или как перепрограммировать Т-лимфоциты, чтобы вылечить рак

Статья на конкурс «био/мол/текст»: Ученые объединили методы иммунотерапии, цитотерапии и генотерапии для перепрограммирования Т-лимфоцитов в потенциальных «убийц» раковых клеток.

Но и этого оказалось недостаточно — следующим шагом стало создание молекулярного «выключателя», с помощью которого можно регулировать время и силу действия активированных Т-клеток.

Инновационный метод закладывает основу для резкого сокращения серьезных (а иногда и смертельных) побочных эффектов, вызванных терапией с использованием модифицированных Т-клеток.

Обратите внимание!

Эта работа опубликована в номинации «Лучшая статья по иммунологии» конкурса «био/мол/текст»-2015.

Спонсором номинации «Лучшая статья о механизмах старения и долголетия» является фонд «Наука за продление жизни». Спонсором приза зрительских симпатий выступила фирма Helicon.

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

В последнее время в терапии опухолевых заболеваний особое внимание уделяется адоптивной иммуноцитотерапии (от англ. adoptive — приемный). При этом часть клеток иммунной системы пациента искусственно «натравливают» на опухолевые клетки.

Суть метода состоит в том, чтобы отобрать у пациента необходимые иммунные клетки, обработать их — например, иммунными цитокинами (небольшими белками, выполняющими функции регуляторов деления и дифференцировки специфических иммунных клеток), — а затем вернуть в организм уже активированные клетки, которые и будут помогать бороться с опухолями* (рис. 1).

Рисунок 1. Схема получения антиопухолевых Т-клеток для адоптивной иммуноцитотерапии. Рисунок из [3].

Впервые метод адоптивной иммуноцитотерапии был описан еще в 1988 году — у пациентов с метастатической меланомой (то есть раком кожи на четвертой стадии) наблюдалась регрессия заболевания при терапии с помощью их TIL-клеток (лимфоцитов, инфильтрующих опухоль) [2]. В настоящее время терапия метастатической меланомы на основе TIL-клеток является наиболее эффективным способом лечения данного заболевания, поскольку регрессия опухоли наблюдается у половины пациентов [3].

Существует несколько вариантов клеток, которые используются в адоптивной иммунотерапии; из них три используются при терапии опухолевых заболеваний: уже знакомые нам TIL-клетки (лимфоциты, инфильтрующие опухоль), LAC-клетки (лимфокин-активированные киллеры) и CIK-клетки (цитокин-индуцированные киллеры).

На самом деле собственные Т-клетки организма тоже стараются бороться с опухолевыми клетками, только зачастую опухолевые клетки им «не по зубам».

Не то, чтобы совсем — ведь существует иммунный надзор, осуществляемый Т-клетками и естественными киллерами (NK-клетками), с помощью которых иммунная система старается защититься от опухолей, — однако это вовсе не стопроцентная защита.

Однако случается, что иммунный надзор не всегда достаточно силен, чтоб предотвратить развитие опухолей: так, при длительном применении иммунодепрессантов после трансплантаций органов повышается частота развития многих опухолей [4].

Несмотря на сложность получения модифицированных клеток, а также сопутствующий риск возникновения серьезных побочных эффектов, все же главной проблемой метода иммуноцитотерапии является отсутствие способов прицельной доставки вводимых модифицированных иммунных клеток в опухоль.

Раковые клетки часто делаются практически «невидимыми» для иммунной системы, и они образуют микросреду, которая подавляет активность и миграцию Т-клеток [5]. Для того, чтобы сбросить мантию-невидимку с опухолевых клеток, Т-лимфоциты надо не только активировать, но и придать им способность прицельно узнавать опухолевые клетки.

Т-клетки могут быть перепрограммированы методами генной инженерии путем введения генов, кодирующих рецепторы к опухолевым антигенам (TAA, tumour-associated аntigens) — оснащения собственной «системой наведения».

Также можно заодно ввести гены для придания Т-клеткам устойчивости к иммуносупрессии для увеличения выживаемости или облегчения проникновения сконструированных Т-клеток в опухоль. В итоге, могут быть получены высокоактивные «наемные убийцы» раковых клеток [5].

Для получения эффективных «убийц» Т-лимфоциты модифицируют путем оснащения их искусственными химерными антигенными рецепторами (CAR, chimeric antigen receptors).

Рецепторы химерные, поскольку одна часть (распознающая) была «позаимствована» у моноклональных антител, а часть, передающая сигнал, — у Т-клеточного рецептора (ТCR).

В качестве внеклеточной «распознающей» части обычно служат вариабельные домены тяжелой и легкой цепи иммуноглобулинов необходимой специфичности (scFv), которые образуют специфичный к опухолевым клеткам антиген-связывающий участок [5] (рис. 2).

ips клетки - перепрограммирование клеток в лечении опухолей, паралича, рака и других заболеваний

Рисунок 2. Структура химерного антигенного рецептора (CAR).

CAR состоит из внеклеточного домена (одноцепочечного вариабельного фрагмента антитела (scFv)), соединенного с помощью цепей и трансмембранных доменов с цитоплазматической сигнальной областью.

Гены, кодирующие scFv, получены из В-клеток, продуцирующих антитела, специфичные к опухолевому антигену. CAR существует в виде димера, и распознавание опухоли происходит напрямую (без участия MHC). Рисунок из [5].

Все новое — это хорошо забытое старое. Первые Т-клетки с химерным антигенным рецептором были получены командой ученых под руководством профессора Эсхара (Zelig Eshhar); результаты работы были опубликованы еще в 1989 году [6]. Эсхар понял, что, обладая данной техникой, Т-клетки можно запрограммировать на нацеленную атаку.

Однако с момента обнаружения химерных антигенных рецепторов до внедрения технологии в практику прошло больше 20 лет.

За это время были улучшены химерные антигенные рецепторы — были созданы CAR 2-го поколения, в которые был внесен дополнительный сигнальный домен костимулирующей молекулы, который позволил улучшить активацию Т-клеток и их распространение.

В CAR 3-го поколения был добавлен еще один сигнальный домен, что в конечном итоге повысило уровни выживания и размножения модифицированных Т-клеток [7] (рис. 3). В конечном итоге были улучшены способность к «выслеживанию» опухолевых клеток, а также уменьшены побочные эффекты.

ips клетки - перепрограммирование клеток в лечении опухолей, паралича, рака и других заболеваний

Рисунок 4. Бутылка с питательной средой для Т-клеток, которые после введения в них нового рецептора выращивают около 10 дней до достижения ими количества в несколько миллиардов. Тогда они могут быть введены в вены пациента. Рисунок из [9].

Первые клинические испытания генетически модифицированных Т-лимфоцитов, несущих химерные антигенные рецепторы, прошли в 2012 году. Они выпали на долю девочки по имени Эмили, больной острой лимфобластной лейкемией.

После того, как генетически модифицированные Т-клетки были обратно введены девочке, ее состояние резко ухудшилось, и она провела несколько недель в отделении интенсивной терапии на искусственной вентиляции легких.

В какой-то момент жизнь Эмили висела на волоске, но в итоге девочка поправилась, и уже три года в ее организме врачи не находят даже единичных раковых клеток [8].

Побочные эффекты новой терапии

Несмотря на то, что иммуноцитотерапия Т-клетками с CAR является прорывом в области лечения опухолевых заболеваний, есть еще ряд опасностей, которые могут поджидать за углом.

Доктор Карл Джун (Carl June) из университета Пенсильвании был одним из первых, кто опубликовал успешные результаты лечения модифицированными Т-клетками, сравнил то, что происходит внутри тела пациента с «серийным убийством» и «массовым убийством».

Когда миллиарды Т-клеток, которые были введены в организм, поделятся, то они смогут обнаружить и убить несколько фунтов опухоли.

Но в этом тоже немало риска — многие пациенты страдают от синдрома высвобождения цитокинов (цитокинового шторма) — при борьбе Т-клетки с опухолевой клеткой высвобождается большое количество молекул цитокинов, что представляет угрозу для самого организма. Так, семь пациентов умерло вследствие этого синдрома [9].

Побочные эффекты связаны с мощной иммунной активностью модифицированных Т-клеток. Одним из камней преткновения является риск высокой токсичности, не позволяющий ввести подобное лечение на регулярной основе.

«Т-клетки — действительно мощные создания», — говорит профессор Венделл Лим (Wendell Lim), заведующий отделом Департамента клеточной и молекулярной фармакологии Калифорнийского университета. — «Будучи активированными, они могут вызвать смерть.

Нам необходима система удаленного контроля, которая сохранит силу этих модифицированных Т-клеток, и позволит специфично „общаться“ с ними и управлять Т-клетками, находящимися в организме» [10].

Т-клетки взяли под контроль

Ученые из Калифорнийского университета в Сан-Франциско создали молекулярный «включатель», с помощью которого можно управлять действиями генноинженерных Т-лимфоцитов.

Как и обыкновенные Т-клетки, несущие CAR, новые Т-клетки с «включателем» будут взаимодействовать с опухолевыми клетками, но не будут переходить «в атаку», пока не будет введен специальный препарат.

Данный препарат является своеобразным «химическим мостиком» внутри Т-клеток: он запускает иммунные реакции, «включает» их, переводя в активное состояние. Когда препарат перестает циркулировать в крови, Т-клетки снова переходят в «выключенное» состояние (рис. 5).

ips клетки - перепрограммирование клеток в лечении опухолей, паралича, рака и других заболеваний

Рисунок 5. Титруемый контроль генноинженерных Т-клеток с помощью включаемого химерного антигенного рецептора. С обычным CAR Т-клетки активируются при соединении с клеткой-мишенью, при этом из-за очень сильного иммунного ответа есть риск высокой токсичности.

«Включаемый» CAR требует небольшую стимулирующую молекулу для запуска терапевтической функции. Величину ответа (например, «убийства» клеток-мишеней) можно титровать, тем самым уменьшая токсичность при уменьшении количества небольшой стимулирующей молекулы. Рисунок из [11].

Внедрение «пульта управления» в Т-клетку с химерным антигенным рецептором — это пример простой и эффективной стратегии совмещения собственных и автономных решений клетки (например, обнаружение сигналов болезни) с контролируемыми пользователем из вне.

Перегруппировка и расщепление основных частей CAR обеспечивает возможность «включения» и «выключения» химерных антигенных рецепторов.

Данная работа также подчеркивает важность разработки оптимизированных биоинертных «пультов управления», таких как небольшие молекулы и свет, вместе с их клеточными компонентами реагирования, в целях повышения точности контролируемой терапии [11].

Таким образом, правильно дозируя препарат, можно управлять уровнем иммунной активности модифицированных Т-клеток. В частности, благодаря данной технологии можно снизить отрицательные последствия синдрома высвобождения цитокинов.

Также иногда нормальные клетки экспрессируют небольшие количества белков, которые являются мишенью для Т-клеток с CAR.

Поскольку модифицированные Т-клетки вводят в кровяное русло и они проходят через сердце и легкие, ткани этих органов могут быть повреждены прежде, чем Т-клетки достигнут своих намеченных целей в других частях тела. А с новой технологией Т-клетки будут в «выключенном» состоянии, пока не достигнут цели [10].

Иммунотерапия с помощью Т-клеток с CAR успешна против рака крови, но, когда дело доходит до твердых опухолей, которые образуются в толстой кишке, молочных железах, мозге и других тканях, модифицированные Т-клетки до сих пор не показывают высокой эффективности. Возможно, метод дистанционного управления Т-клетками позволит разработать более мощные версии химерных антигенных рецепторов, которые позволят Т-клеткам поражать твердые опухоли, при этом не обладая серьезными побочными эффектами.

  1. Хороший, плохой, злой, или Как разозлить лимфоциты и уничтожить опухоль;
  2. Rosenberg S.A., Packard B.S., Aebersold P.M., Solomon D., Topalian S.L., Toy S.T. et al. (1988). Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N. Engl. J. Med. 319, 1676–1680;
  3. Rosenberg S.A., Restifo N.P., Yang J.C., Morgan R.A., Dudley M.E. (2008). Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat. Rev. Cancer. 8, 299–308;
  4. Ярилин А.А. Иммунология. М.: ГЭОТАР-Медиа, 2010. — 752 с.;
  5. Kershaw M.H., Westwood J.A., Darcy P.K. (2013). Gene-engineered T cells for cancer therapy. Nat. Rev. Cancer. 13, 525–541;
  6. Gross G., Waks T., Eshhar Z. (1989). Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl. Acad. Sci. USA. 86, 10024–10028;
  7. Urba W.J. and Longo D.L. (2011). Redirecting T cells. N. Engl. J. Med. 365, 754–757;
  8. Emily Whitehead Foundation;
  9. Regalado A. (2015). Biotech’s coming cancer cure. MIT Technology Review;
  10. Farley P. (2015). ‘Remote control’ of immune cells opens door to safer, more precise cancer therapies. University of California San Francisco;
  11. Wu C., Roybal K.T., Puchner E.M., Onuffer J., Lim W.A. (2015). Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science. 350, aab4077..
Читайте также:  Причины пареза лицевого нерва – симптомы пареза тройничного нерва у взрослых и детей

Источник: https://biomolecula.ru/articles/t-kletki-marionetki-ili-kak-pereprogrammirovat-t-limfotsity-chtoby-vylechit-rak

Перепрограммирование рецептора позволит бороться со всеми типами рака

; ips клетки - перепрограммирование клеток в лечении опухолей, паралича, рака и других заболеваний Георгий Голованов 5 февраля 2018 Георгий Голованов 5 февраля 2018

При помощи перепрограммирования химического рецептора, имеющегося почти во всех человеческих клетках, исследователи из Стэнфордского университета надеются создать новые препараты для лечения практически всех типов рака.

Злокачественные клетки, вызывающие лейкоз, обладают ахиллесовой пятой — молекулой CD19, расположенной на их поверхности, которая способна уничтожать раковые клетки, к которым прикреплена.

Она действует как радиосигнал, передающий местонахождение опухоли, но если иммунная система организма не работает, некому услышать этот сигнал.

Создав специфические иммунные клетки, ученые Стэнфорда под руководством Стенли Ци смогли с помощью технологии генного редактирования CRISPR отследить и уничтожить все клетки лейкемии, передающие сообщение молекулы CD19.

ips клетки - перепрограммирование клеток в лечении опухолей, паралича, рака и других заболеваний

Огнеметы для зомби-апокалипсиса принесли Илону Маску $5 млн

Команда Ци описала метод использования рецепторов, сопряженных с G-белком (GPCR), одной из самых крупных семейств трансмембранных рецепторов у человека, которые служат для передачи биохимических сигналов и коммуникации клеток. Их технология заставила ряд GPCR выдавать местоположение клеток, отвечающих за болезни и дисфункции.

Ученые назвали свой метод «Ча-ча-ча», поскольку он состоит из «танца» двух молекул, которые меняют генетический код GPCR.

«При помощи „Ча-ча-ча“ мы можем создавать антенны GPCR, которые распознают практически все молекулы, включая гормоны, факторы клеточного роста и искусственные препараты», — говорит Ци.

Причем у этого метода есть два преимущества: силой его действия можно управлять, и его эффект обратим.

Несмотря на то, что подход, предложенный Ци и его коллегами, требует дальнейшего изучения, ученые убеждены, что однажды он сможет стать новым видом терапии лейкоза, а также почти всех остальных типов рака, включая солидные, поскольку у всех них есть эта молекула. Кроме того, ученые считают, что этот метод однажды позволит лечить не только онкологические заболевания, но и другие болезни, которые применяют тот же метод передачи сигналов.

ips клетки - перепрограммирование клеток в лечении опухолей, паралича, рака и других заболеваний

В США запретят продавать смартфоны без съемных батарей

В августе прошлого года Управление по санитарному надзору США (FDA) одобрило использование первого лекарства от лейкемии на основе генетической клеточной терапии. Процедура, известная как Kimriah, основана на использовании собственных клеток пациента.

Источник: https://hightech.fm/2018/02/05/beacon-target

Новые методы лечения рака

По данным Минздрава РФ, только в 2018 году в мире было зарегистрировано около 18 миллионов новых случаев рака и других злокачественных новообразований. Всемирная организация здравоохранения (ВОЗ) утверждает, что с онкологическими заболеваниями сталкивается каждый пятый мужчина и каждая шестая женщина.

Новые методы лечения рака позволяют помочь пациентам, которые ранее могли рассчитывать только на паллиативную помощь.

Люди, далекие от медицины и сами врачи связывают терапию онкологических заболеваний с массивными, калечащими операциями, изнуряющей химиотерапией, которая переносится тяжелее, чем сами симптомы болезни, долгим восстановлением и постоянным страхом, что болезнь вернется.

Критерием эффективности лечения рака считают так называемую пятилетнюю выживаемость. Этот отрезок времени отмеряют от момента обнаружения онкологического процесса. Он связан с тем, что в данные сроки возникает наибольшее число рецидивов опухоли. ВОЗ отмечает, что ранняя диагностика и успешное лечение в последние годы «подарили» до 5 лет жизни почти 44 миллионам пациентов.

Как развивается рак

Клетки организма размножаются делением и начинают умирать после 50-52 циклов. Процесс естественной гибели называется апоптоз. Зараженные вирусом, мутирующие клетки выставляют на своих оболочках специальные маркеры. Их распознает и немедленно уничтожает иммунная система. Соседние клетки утилизируют продукты распада.

В организме человека ежедневно возникает угроза появления и воспроизведения «неправильных» клеток. Заболевание возникает только при нарушениях со стороны иммунитета или внутриклеточных механизмов регуляции.

Бесконтрольное размножение приводит к тому, что клетки не успевают созревать, утрачивают свои свойства. Они распространяются в окружающие ткани или мигрируют с кровью, лимфой, образуя метастазы. Канцерогенез — процесс перерождения обычных клеток в атипичные.

Как работает традиционное лечение

Стандартные современные методы лечения рака направлены на уничтожение опухоли различными способами:

  • оперативное вмешательство;
  • введение химиопрепаратов;
  • лучевая или радиотерапия
  • иммунотерапия

При хирургическом лечении врач удаляет массив атипичных клеток. К недостаткам метода относят невозможность убедиться на месте, что рак удален в полном объеме, и сложность проведения операции в труднодоступных местах.

Во время химиотерапии пациент получает лекарства, которые нарушают жизнедеятельность, тормозят размножение клеток опухоли или стимулируют их апоптоз. Препараты воздействуют и на здоровые ткани организма, что ухудшает переносимость лечения. У ряда пациентов рак может и не реагировать на стандартные средства.

Радиотерапия борьба с опухолью различными видами излучения. Она повреждает ДНК быстро делящихся клеток, приводя к их гибели. Недостаток метода заключается в невозможности прицельного воздействия только на патологический очаг.

Чтобы стандартное лечение помогло пациенту, необходимо стечение обстоятельств:

  • небольшой размер и хорошая доступность первичной опухоли,
  • низкая злокачественность и хороший ответ на препараты,
  • хорошая переносимость курса терапии.

А как же быть тем, чья история борьбы с раком осложнена отягчающими обстоятельствами? В области онкологии новости лечения связаны с преодолением стандартных проблем терапии:

  • нечувствительность рака к препаратам или облучению;
  • невозможность воздействия только на клетки опухоли;
  • большой объем образования и риск непереносимости терапии;
  • риск оставить рак на месте после операции.

Если иммунитет «растерялся»

В крови человека есть клетки, выполняющие защитную функцию. Это T и B-лимфоциты.

Они помогают расправляться как с инфекционными агентами, так и с аномальными образованиями: обнаруживают, передают информацию о «преступниках», ликвидируют угрозу и сохраняют в памяти сведения о контакте.

На оболочках клеток организма находятся рецепторы, которые сигнализируют иммунитету, все ли с ними в порядке. Зараженные вирусами или атипичные образования подлежат уничтожению.

Маркировка опасных раковых клеток

Если иммунная система пропускает начало опухолевого процесса, болезнь прогрессирует. Раковые клетки действуют хитростью, маскируя свои рецепторы специальными белками.

Микробиологи изобрели так называемые моноклональные антитела. Это белковые молекулы, имеющие сродство только к определенным рецепторам. Антитела связываются с раковыми клетками, не только делая их видимыми для иммунной системы, но активируя их уничтожение.

Моноклональные антитела созданы для молекул, отвечающих за развитие разных заболеваний. Этот принцип лег в основу таргетной (прицельной) терапии.

Например, препарат Ритуксимаб эффективен при лечении B-клеточных лимфом, Цетуксимаб для борьбы с раком толстой и прямой кишки, опухолями головы и шеи.

Бевацизумаб применяют при опухоли молочной железы, толстого кишечника, головного мозга и немелкоклеточном раке легких.

Эти медикаменты доступны и в России. Первое время их производством занимались только иностранные компании. Пациенты с нечувствительностью к стандартной химиотерапии могли опасаться, что препарат не придет вовремя или будет стоить дороже. С 2012 года российская компания Biocad производит биоаналоги: Гертикад, Авегра, Ацеллбия.

CAR-T – найти и уничтожить

Генная терапия помогает организму бороться с опухолью посредством модифированных T-лимфоцитов. Их готовят индивидуально. Из крови пациента выделяют нужные клетки, а в структуру ДНК встраивают рецептор, состоящий из нескольких частей.

Его внеклеточная часть на оболочке распознает раковые клетки. Внутриклеточная область активизирует другие звенья иммунитета. За счет этого происходит уничтожение опухоли. «Отработавшие» лимфоциты не погибают, а продолжают поиски новых клеток.

Универсальный рецептор на поверхности позволяет настраивать иммунитет против разных опухолевых антигенов. T-клетки легко проникают внутрь раковой опухоли. Так CAR-T позволяет уничтожать самые мелкие метастазы в головном и спинном мозге, снижая риск рецидива. Генную терапию считают более эффективной по сравнению с моноклональными антителами.

Достижения иммунной терапии

Среди последних новостей в онкологии – официальное разрешение американской федерации FDA на применение CAR-T в борьбе с B-клеточными лимфомами. Препарат Yescarta — лишь второе такое средство за всю историю генной терапии.

Ученые доказали, что применение моноклональных антител в комплексе с CAR-T – один из самых эффективных методов лечения рака у пациентов с плохой переносимостью и резистентностью к традиционной химиотерапии. Так у пациентки с 4 стадией карциномы молочной железы уменьшился в объеме первичный очаг и его метастазы.

В 2018 году Нобелевская премия за метод лечения рака была присуждена двум ученым Джеймсу Эллисону (США).

Их исследования продолжались более 20 лет и привели к открытию белка PD-1 и рецепторов CD152 на лимфоцитах, мешающих иммунитету находить и уничтожать раковые клетки. Затем ученые синтезировали препараты, которые решают эту проблему.

Читайте также:  Лечение пролежней народными средствами, консервативной терапией и хирургическими методами – как и чем лечат пролежни и их осложнения?

В перспективе средства позволят увеличить выживаемость при опухолях различной локализации, в том числе при наличии метастазов.

Эти новые методы лечения рака доступны и в России. Среди зарегистрированных зарубежных препаратов: Китруда, Ервой, Тецентрик.

Диагностика и лечение с помощью света

Отделение злокачественной опухоли от здоровой ткани представляет определенные сложности. Травмы новообразования при операции и сохранение в организме «забытых» клеток может стимулировать рост и метастазирование опухоли.

Так в 2017 году хорошей новостью в лечении рака стало открытие профессора Хайинь Лю из Мичиганского технологического университета. Химик обнаружил антитела, которые при введении в организм прикрепляются только к раковым клеткам и заставляют их светиться в инфракрасном диапазоне.

Очаги опухоли хорошо заметны на фоне здоровых тканей, имеющих зеленоватое или синеватое свечение. Этот метод стали применять для ревизии операционного поля и окружающих лимфоузлов во время операции.

Фотодинамическая терапия основана на использовании светочувствительных веществ (фотосенсибилизаторов) и лазерной установки. Их молекулы поглощают кванты света, уничтожая раковые клетки и разрушая сосуды, питающие опухоль. Невозможность прицельного воздействия лазера позволяла применять его только для видимых кожных опухолей.

Однако изобретение ученых в московском университете НИТУ «МИСиС» позволило преодолеть это ограничение. Они соединили молекулу фотосенсибилизатора с контрастным агентом.

Так в конце 2018 года был получен инструмент, помогающий использовать фототерапию для рака другой локализации.

Новое в лечении онкологии в 2019 году — это возможность отслеживать границы опухоли и концентрацию фото-лекарства в пораженном органе с помощью МРТ.

Нижегородские ученые синтезировали флуоресцентный белок, который позволяет обнаруживать клетки опухолей. В 2012 году они получили патент на воспроизведение пептида, уничтожающего рак шейки матки в поле лазера.

Прицельное воздействие на опухоль

Радиотерапия сопряжена с риском получения массивного облучения. Во время лечения повреждаются не только раковые, но и здоровые клетки.

К самым сложным локализациям опухоли относят голову и шею ввиду опасности повреждения головного мозга и крупных сосудов. Поражение зрения, слуха неизбежно снижает качество жизни пациента.

Кроме того, до ряда опухолей нельзя добраться хирургическим путем.

Уничтожить такой рак помогает стереотаксическая гамма-терапии (или гамма-нож). Лучевые диагносты определяют точную локализацию и размеры образования, после чего в патологический очаг направляют до 200 лучей из разных точек. Единственная процедура занимает несколько часов и дает результат, сопоставимый с 30 сеансами облучения.

Гамма-нож – неинвазивная хирургическая процедура, которая позволяет пациентам возвращаться домой в день ее проведения. В 2019 году в России действует 6 установок, позволяющих помочь 3 тысячам пациентов в год. Новости онкологии в этой области обнадеживают онкобольных перспективами открытия 20 таких центров в стране.

В 2018 году сотрудники филиала «НМИЦ радиологии» Минздрава в г. Обнинске сконструировали портативные нейтронные генераторы на базе гамма-излучателей.

Нейтронное излучение в онкологии применяется более 40 лет.

Однако необходимость строить для оборудования отдельные здания и возможность пролечить не более 10 человек в день существенно ограничивали применение генератора. Компактные приборы решают эту проблему.

Снизить повреждение окружающих тканей возможно благодаря замене рентгеновского излучения на протонное. Оно лучше концентрируется в очаге. В 2018 году немецкие ученые из Центра им. Гельмгольца Дрезден-Россендорф успешно соединили протонную терапию с МРТ-сканером.

Ранее визуализацию опухолей выполняли с помощью компьютерной томографии, на которой хорошо отображаются только неподвижные костные образования.

Среди новостей в лучевом лечении рака в 2019 году – создание прибора, позволяющего ввести протонное облучение в клиническую практику.

Экспериментальное лечение рака

Внедрение новых методик терапии возможно благодаря клиническим исследованиям. В ходе экспериментального лечения используются методы, эффективность и безопасность которых полностью не изучена. Онкологи проводят набор пациентов с определенным заболеванием. Они полностью обследуют кандидатов и отсеивают тех, кто не подходит по состоянию здоровья.

Лица, прошедшие скрининг, получают бесплатную экспериментальную терапию. К ней относят:

  • генное лечение;
  • локальное замораживание тканей;
  • точечный нагрев тканей;
  • применение бактерий-анаэробов;
  • вакцины против рака;
  • лечение лазером;
  • нанотехнологии.

Участие в клинических исследованиях дает шанс выйти в ремиссию пациентам, которым не помогают стандартные схемы лечения.

Можно ли считать, что экспериментальная терапия позволяет победить рак? Исследователи рассказывают о протоколах с ошеломляющими результатами. Так при испытании препарата Китруда в 2013 году около 76% участников почувствовали облегчение, а полностью излечилось от рака около 20%. Так препарат был включен в схемы лечения различных агрессивных опухолей.

При обнаружении немедленных или отсроченных негативных последствий протоколы закрывают, а средства или методы не допускают до рутинной практики.

С 2018 года работает сервис, позволяющий онкологам России искать больницы, в которых проводят экспериментальную терапию, и направлять туда пациентов. Он создан непосредственно Агентством клинических исследований и Российским онкологическим обществом RUSSCO.

Последние новости в онкологии: что ожидать в 2019 году?

Ученые разных стран объединяются в интересах пациентов. Так 19 февраля 2019 года на базе филиала ФГБУ «НМИЦ радиологии» Минздрава России состоялся первый семинар по регенеративной медицине.

Отрасль находится на стыке биологии, инженерии и лечебной деятельности.

Регенеративная медицина помогает восстанавливать поврежденные, удаленные ткани за счет стволовых клеток пациентов, трансплантации или имплантации биоматериалов.

Специалисты в области клинической иммунологии, радиологии, регенеративных технологий из России принимали японских коллег. Трансляция семинара позволила коллегам из 38 регионов получить актуальную информацию о применении новых дендритно-клеточных вакцин от рака, культивировании стволовых клеток с помощью роботов, инженерных методиках.

Кроме того, среди новостей онкологии 2019 года в России — успешное внедрение органосохраняющих операций при раке легких и эндоскопическое удаление новообразования желудка и толстого кишечника.

К сожалению, онкологи до сих пор не располагают «волшебной таблеткой» от всех видов опухолей. Рак остается заболеванием с высокой летальностью. Однако современные изобретения в этой области помогают подарить жизнь и здоровье все большему числу пациентов.

Источник: http://profilaktica.ru/profilaktika-zabolevaniy/onkologiya/novye-metody-lecheniya-raka/

С раком можно бороться с помощью перепрограммирования клеток-макрофагов

Исследователи Каролинского института (швед.

Karolinska Institutet) в Швеции создали антитела, которые перепрограммируют ассоциированные с опухолью макрофагальные клетки, что позволяет иммунной системе распознать и убить опухолевые клетки.

В исследовании, опубликованном в журнале Cell, сообщается, что результатом работы может быть создание нового метода терапии и диагностики рака молочной железы и злокачественной меланомы.

Иммунотерапия — метод лечения онкозаболеваний, при котором воздействие оказывается не на опухоль, а на иммунную систему пациента с тем, чтобы она могла сама убить опухолевые клетки.

«Мы нашли новый способ использования антител в иммунотерапии.

Они активируют иммунные клетки, называемые макрофагами, в опухоли, — поясняет член исследовательской команды профессор Микаэль Карлссон (Mikael Karlsson), кафедра микробиологии, опухолевой и клеточной биологии Каролинского института. — Это облегчает иммунной системе задачу распознавать опухолевые клетки. Исследования на животных трёх разных видов рака дали обнадёживающие результаты».

Иммунотерапия — перспективное направление медицины. Для лечения раковых заболеваний уже применяются модифицированные Т-лимфоциты. Однако для многих типов рака терапия Т-клетками неэффективна.

Опухоли обладают способностью скрывать своё присутствие в организме от иммунной системы, к тому же реакция иммунной системы на опухолевые клетки изначально не такая сильная, как, например, на проникающую извне инфекцию.

Шведские учёные сосредоточились на работе с макрофагами, иммунокомпетентными клетками, нормальная функция которых заключается в борьбе с инфекциями. Но есть макрофаги (макрофаги, ассоциированные с опухолью), которые влияют на тканевое микроокружение опухоли, упрощая раковым клеткам выживание и распространение.

Обычно в опухоли эта разновидность макрофагов доминирует, это мешает Т-лимфоцитам и другим иммунным клеткам обнаружить и убить рак. Исследователям удалось перепрограммировать и активировать этих макрофагов с помощью антител, нацеленных на определённый белок на поверхности клетки, что остановило рост и распространение опухолей у мышей.

Предполагается, что в будущем такая терапия будет применяться в сочетании с терапией модифицированными Т-клетками.

Исследователи сообщают, что использованный в их работе тип макрофагов может быть найден в человеческой раковой опухоли молочной железы и злокачественной меланоме, и поэтому есть надежда, что будут найдены антитела, которые будут эффективны для лечения этих заболеваний.

«Теперь мы надеемся, что эта новая терапия, которая протестирована доклинически, однажды начнёт использоваться в сочетании с другими видами иммунотерапии, чтобы сделать их ещё более эффективными, — говорит профессор Карлссон. — Мы также рассматриваем вопрос о том, может ли наличие такого типа макрофагов в опухолях человека быть использовано клинически для диагностики онкологических заболеваний».

Источник: https://22century.ru/medicine-and-health/26318

Почему мы все еще не победили рак и какие новые способы борьбы с ним существуют

  • 19 любимых цитат с «Башорга», над которыми мы смеялись как сумасшедшие
  • 13 экранных пар, которые забыли выйти из образа и поженились в реальной жизни
  • Бесценные лайфхаки, которые сделают любой полет максимально комфортным
  • 9 дочерей, которые унаследовали максимум харизмы своих звездных родителей
  • 12 комиксов, которые близки каждому, кто хоть раз влюблялся по уши
  • 9 стран, которые изменили свои названия
  • «Знаете, что больше всего нужно детям, особенно маленьким девочкам?». Душевный текст о том, что мы закладываем в детей
  • 27 лет назад маленькая девочка выступила в ООН, чтобы обвинить взрослых в изменении климата. Вот только мир о ней забыл
  • Как выглядит поезд, билет на который стоит более ₽ 1 млн (Люди ждут очереди месяцами)
  • 9 приемов, которые использует магазин ASOS, чтобы его товар разбирали как горячие пирожки
  • 16 остросюжетных CМС-диалогов людей с альтернативной логикой
  • 19 человек, которые найдут оригинальный подход в любом деле
  • 15 актеров, которые рискнули сыграть совсем нетипичную для них роль
  • 17 откровений от реальных владельцев брачных агентств о том, как на самом деле устроен рынок любви
  • Посмотрите, какие неизвестные факты скрывают наши любимые мультфильмы
  • 15 подзабытых комедийных актеров, которых мы сегодня вряд ли бы узнали на улице

Источник: https://www.adme.ru/zhizn-nauka/uchenye-rasskazali-o-novyh-sposobah-borby-s-rakom-kotorye-mogut-zamenit-himioterapiyu-1820215/

Ссылка на основную публикацию
Adblock
detector